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Note 

Homogeneous Boundary Conditions for Pressure in the Mac Method 

A new formulation for the continuity equation in the Marker-and-Cell (MAC) 
method has been found which yields an explicit pressure distribution from the solution 
of a Poisson equation with homogeneous boundary conditions. This new formulation 
is also free of the ambiguities of the old MAC in the region of inflow/outflow boundaries 
and convex comers. These changes result in a substantial simplification to the program 
and an average of 30 ‘A reduction in computation time. 

The Simplified Marker-and-Cell (SMAC) method [l] and [2] was developed by 
Amsden and Harlow as a major improvement to the MAC method. In both of 
these methods, the Navier-Stokes equations for the local conservation of 
momentum are cast into finite difference form. The equation for conservation of 
mass is transformed to a Poisson equation for the pressure distribution in MAC and 
for part of the scalar portion of a vector velocity potential in SMAC. The primary 
advantages of SMAC over MAC are that the boundary conditions for the Poisson 
equation in SMAC are homogeneous and that there are no ambiguities in the 
region of inflow/outflow boundaries and corners. MAC retains the advantage 
that pressure field is found as a direct result of the solution of its associated 
Poisson equation. This pressure field is required when the forces and moments 
exerted on the container by the liquid are desired and when the onset of cavitation 
or nucleate boiling is to be found. 

A third approach to satisfying conservation of mass is described in this paper. 
A Poisson equation for the pressure distribution is still used, but it is formulated 
with homogeneous boundary conditions, and it is also free of ambiguities near 
corners and inflow/outflow boundaries. Thus, the new method retains the separate 
advantages of both MAC and SMAC. The other advantages of SMAC described 
in [l] and [2] also accrue to the present method, including the simplified formu- 
lation of the Poisson equation. 

The pressure equation for MAC [3] is the finite difference analog of 

V2+ = Q, 

where 4 is the ratio of pressure to density and Q is calculated directly from the 
velocity field and must include correction terms in the vicinity of corners, 
inflow/outflow boundaries, and some other mesh boundary conditions. It is, 
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in some instances, difficult to formulate Q in (1) in the precisely consistent manner 
necessary to maintain small dilatation in the fluid. In this paper, the finite difference 
analog to Eq. (1) is first derived in a manner which eliminates most of the difficulty 
of consistency between the continuity and momentum equations. Then it is shown 
that the continuity equation can be altered to utilize homogeneous boundary 
conditions for the pressure. Computations are thereby simplified, and another 
potential source of inconsistency is eliminated. 

The continuity equation in rectangular coordinates is 

g+g=D, (2) 

where D is the dilatation. Following the recommendations for MAC [4], D is 
retained in (2) and the entire equation is differentiated with respect to time. Finite 
differencing the resulting equation yields 

1 au 
6x [( 1 -z i+1j++ - (q+$l + & E,,,,,,, - G-~~+J = - % 3 C3) 

where D$+" has been set equal to zero. 
The mesh and velocities are shown in Fig. 1. All of the information required to 

calculate au/at and au/at is known at the beginning of a computational cycle except 
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FIG. 1. Computational Mesh for MAC. 
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the pressure. Easton and Nelson [5] showed the utility of separating au/at and&/at 
into the known and unknown parts, 

au ad a$ au ad a$ -I- 
at= at ax’ and ---. at= at ay 

Substituting into (3) yields (1) with Q defined in terms of &‘/at and ad/at. 
These quantities are already being calculated at some point in the computation 
cycle and their direct use in formulating Qli assures consistency between the 
momentum and continuity equations, except for cells adjacent to corners. The 
finite difference analog of (3) in terms of u’, u’, and 4, arranged for solution by 
iterative methods, is 

Equation (5) is invariant with respect to changes in differencing technique, 
formulation of the Navier-Stokes equations, variable viscosity (as in turbulence), 
incorporation of buoyancy effects, and other changes which require reformulation 
of Q in MAC. Still present are the boundary inhomogenities and problems of 
consistency near corners and inflow/outflow boundaries. 

The derivation of Eq. (5) can be modified so that the boundary conditions for the 
pressure are homogeneous. In MAC, solid wall boundary conditions for the 
pressure are obtained from the equation of momentum normal to the wall. This 
equation is solved for the pressure gradient by setting the time derivative of the 
normal velocity at the wall to zero. There results from (4) 

(6) 

on solid boundaries. As a specific example, let the left side of cell i, j be a solid 
boundary. The procedure in MAC for setting the pressure boundary condition is 
to difference (6), sometimes simplifying the right-hand side, but always, in essence, 
obtaining 
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Rather than formulate Eqs. (5) and (7) in finite difference form separately, the 
desired simplification results from eliminating &//&+1,2 between these equations. 
Direct substitution from (7) into (5) yields the modified pressure equation, 

Note that I& appears on the right-hand side of Eq. (8) in place of +i-1i ; there- 
fore, the boundary condition is homogeneous. 

Equation (8) is exactly the equation that would have been obtained had the 
known quantity (au/at),j+t been retained in (3) instead of being removed by substi- 
tuting from (4). It follows that, as written, (8) is equally valid for inflow or outflow 
boundaries when (au/at)ij++ is known and may be different from zero. Furthermore, 
the formulation (8) does not suffer from ambiguity or inconsistency near 
inflow/outflow boundaries and corners, so long as the velocities required to calcu- 
late &‘/at and ad/at are chosen in the same manner everywhere they are used, 

The new procedure is very easy to incorporate into a MAC program. On all 
boundaries, the actual, known time derivative of the normal velocity is used in (5) 
in place of ad/at or ad/at and the pressure/density ratio outside the boundary is 
replaced by & . This procedure works in the presence of other boundaries and 
when the equations are formulated in any other coordinate systems. The pressure 
and velocity fields computed are identical to those computed by the standard 
MAC method. 

The number of computations required for each iteration cycle in the solution of 
the pressure equation has been substantially reduced. The resulting savings in 
execution time on the computer will vary with the problem solved and the detailed 
coding of the program. A 30 ‘A reduction in computer run time for a simulation 
of low gravity propellant reorientation flow resulted from these simplifications. 
Comparable reductions of run time have been noted for other cases involving 
rapidly changing pressure fields. 

CONCLUSIONS 

While the SMAC method represents a major improvement over MAC, the 
advantages which accrue to SMAC can be made available in a formally identical 
procedure without sacrificing the direct calculation of the pressure field. Therefore, 
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the potential function employed in SMAC to satisfy continuity can be manipulated 
to yield the pressure field directly. The resultant program is substantially simpler 
than MAC, resulting in an important reduction in computation time, but more 
important is the fact that changes in the program may be made much more easily 
than before because of the much simpler logic that results. 
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